College of Engineering Mechanical Engineering Department

Second Stage

THERMODYNAMICI

CHAPTER THREE - THE WORKING FLUID
LECTURE NO. 2 - THE PERFECT GAS

PREPARED BY
DR. MAHMOOD SHAKER

The Perfect Gas

THE PERFECT GAS :

It is a theoretical gas or imaginary gas composed of a set of randomly moving, non-interacting point like particles and they obeys the gas law always.

OR : An ideal gas is an imaginary gas that obeys gas law under all conditions

SOLID atoms are close together, not moving around but are constantly vibrating - they often form a regular pattern

LIQUID
atoms are still close together, but now move around, 'sliding' over each other there is no regular pattern

GAS
atoms are far apart; they move around freely, but collide with each other and any surfaces they meet
\bigcirc

The Characteristic Equation of State

The Characteristic Equation of State :

At temperatures that are considerably in excess of critical temperature of a fluid, and also at very low pressure, the vapour of fluid tends to obey the equation:

$$
\frac{p v}{T}=\text { constant }=R
$$

NOTES:

- In practice, no gas obeys this law rigidly, but many gases tend towards it.
- Any gas which obeys this law is called a perfect gas,
- This equation is called the characteristic equation of a state of a perfect gas.

The Characteristic Equation of State ..Cont.

Usually, the characteristic equation is written as

$$
\mathrm{pv}=\mathrm{RT}
$$

or for $m \mathrm{~kg}$, occupying $V \mathrm{~m} 3$

$$
\mathrm{pV}=\mathrm{mRT}
$$

Where :
The constant R is called the gas constant (kJ/kg.k).
Each perfect gas has a different gas constant, See Table 2 Page 2 in Steam Table for value of \mathbf{R}
T : Temperature in Kelvin (K)
p : Pressure in N/m2
v : specific volume (m3/kg)

The Characteristic Equation of State ..Cont.

The characteristic equation in another form, can be derived by using kilogram-mole as a unit. As per definition of the kilogram-mole, for m kg of a gas, we have

$$
\mathrm{m}=\mathrm{nM}
$$

Where $n=$ number of moles, M : The molecular weight of the gas ($\mathrm{kg} / \mathrm{mole}$)

$$
\mathrm{pV}=\mathrm{nMRT} \text { or } \mathrm{MR}=\frac{\mathrm{pV}}{\mathrm{nT}} \text {, then } M R=\mathrm{Ro}
$$

As result

$$
\mathrm{pV}=\mathrm{RonT}
$$

Where :
Ro :Universal gas constant (Fixed value for all gases
Ro = 8314.3 Nm/mole K

The Characteristic Equation of State ..Examples

A vessel of volume $0.2 \mathrm{~m}^{3}$ contains nitrogen at 1.013 bar and $15^{\circ} \mathrm{C}$. If 0.2 kg of nitrogen is now pumped into the vessel, calculate the new pressure when the vessel has returned to its initial temperature. The molar mass of nitrogen is $28 \mathrm{~kg} / \mathrm{kmol}$, and it may be assumed to be a perfect gas.

$$
\text { Specific gas constant, } R=\frac{\tilde{R}}{\tilde{m}}=\frac{8314.5}{28}=296.95 \mathrm{~N} \mathrm{~m} / \mathrm{kg} \mathrm{~K}
$$

From equation (2.6), for the initial conditions

$$
p_{1} V_{1}=m_{1} R T_{1}
$$

therefore

$$
m_{1}=\frac{p_{1} V_{1}}{R T_{1}}=\frac{1.013 \times 10^{5} \times 0.2}{296.95 \times 288}=0.237 \mathrm{~kg}
$$

where $T_{1}=15+273=288 \mathrm{~K}$
The mass of nitrogen added is 0.2 kg , hence $m_{2}=0.2+0.237=0.437 \mathrm{~kg}$ for the final conditions

$$
p_{2} V_{2}=m_{2} R T_{2}
$$

but $V_{2}=V_{1}$ and $T_{2}=T_{1}$, therefore
i.e.

$$
\begin{aligned}
& p_{2}=\frac{m_{2} R T_{2}}{V_{2}}=\frac{0.437 \times 296.95 \times 288}{10^{5} \times 0.2} \\
& p_{2}=1.87 \text { bar }
\end{aligned}
$$

Specific Heats

Specific Heats

The specific heat of a solid or liquid is usually defined as the heat required to raise unit mass through one degree temperature rise.

For small quantities, we have : $d Q=m c d T$
where
$m=$ mass,
$c=$ specific heat
$d T=$ temperature rise .

Specific Heats..Cont.

We have two specific heats for gases are defined.

- Specific heat at constant volume, cv and,
- Specific heat at constant pressure, cp

The heat flow between two temperature can defined as :
$d Q=m c p d T \quad$ For a reversible non-flow process at constant pressure and,

$$
d Q=m c v d T \quad \text { For a reversible non-flow process at constant volume }
$$

Specific Heats..Cont.

The values of $c p$ and $c v$, for a perfect gas, are constant for any one gas at all pressures and temperatures, we have

$$
\text { Flow of heat in a reversible constant pressure process, } \mathrm{Q}=m c_{p}\left(T_{2}-T_{1}\right)
$$

Flow of heat in a reversible constant volume process, $Q=m c_{v}\left(T_{2}-T_{1}\right)$

In case of real gases, cp and cv vary with temperature, but a suitable average value may be used for most practical purposes.

Joule's Law

Joule's Law

(Definition of Internal energy for perfect gas) :
The internal energy of a perfect gas is a function of the absolute temperature only. i.e., $u=f(T)$

Specific Internal energy, $\mathbf{u = c}=\mathbf{T}$ for a perfect gas

or For mass m, of a perfect gas
Internal energy, U=mcv T

For a perfect gas, in any process between states 1 and 2, we have

$$
\text { Gain in internal energy, } U_{2}-U_{1}=m c_{v}\left(T_{2}-T_{1}\right)
$$

Relationship Between Two Specific Heats

Relationship Between Two Specific Heats

Consider a perfect gas being heated at constant pressure from T_{1} to T . According to non-flow equation, $\mathrm{Q}=(\mathrm{U} 2-\mathrm{U} 1)+\mathrm{W}$
Also for a perfect gas, $\mathrm{U} 2-\mathrm{U} 1=\mathrm{mcv}(\mathrm{T} 2-\mathrm{T} 1)$ and $\mathrm{Q}=\mathrm{mcv}(\mathrm{T} 2-\mathrm{T} 1)+\mathrm{W}$
In a constant pressure process, the work done by the fluid, $\mathrm{W}=\mathrm{p}(\mathrm{V} 2-\mathrm{V} 1)=\mathrm{mR}(\mathrm{T} 2-\mathrm{T} 1), \mathrm{pV} \mathrm{mRT}$,
In this case On substituting
$Q=m c v(T 2-T 1)+m R(T 2-T 1)=m(c v+R)(T 2-T 1)$ But for a constant pressure process, $Q=m c p(T 2-T 1)$,
By equating the two expressions, we have

$$
\begin{aligned}
& \mathrm{m}(\mathrm{cv}+\mathrm{R})(\mathrm{T} 2-\mathrm{T} 1)=\mathrm{mcp}(\mathrm{~T} 2-\mathrm{T} 1) \\
& \therefore \mathrm{cv}+\mathrm{R}=\mathrm{cp} \quad \text { or } \mathrm{cp}-\mathrm{cv}=\mathrm{R} \text { Dividing both sides by } \mathrm{cv} \text {, we get } \frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}-1=\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{v}}} \\
& \boldsymbol{Y}=\frac{\mathbf{C}_{\mathbf{p}}}{\mathbf{C}_{\mathbf{v}}} \text { Ratio of Specific Heats }
\end{aligned}
$$

The ratio of specific heat at constant pressure to the specific heat at constant volume is given the symbol γ (gamma). Then

$$
C v=\frac{R}{r-1} \quad \text { and } C p=\frac{r R}{r-1}
$$

Enthalpy of Perfect Gas

Enthalpy

One of the fundamental quantities which occur invariably in thermodynamics is the sum of internal energy (u) and pressure volume product $(p v)$. This sum is called Enthalpy (h).

$$
\text { i.e., } h=u+p v
$$

The total enthalpy of mass, m, of a fluid can be $H=U+p V$, where $H=m h$.
For a perfect gas, $h=u+p v=c v T+R T \quad$ Where $p v=R T$
$=(c v+R) T=c p T \quad$ Where $c p=c v+R$

$$
h=c p T \text { and } H=m c p T
$$

